playXP

서브 메뉴

Page. 1 / 12522 [내 메뉴에 추가]
글쓰기
작성자 아주소설을써라써
작성일 2011-04-13 23:21:55 KST 조회 94
제목
머리도 식힐 겸 해서

이거나 생각해보셈

Central Trinomial Coefficient
DOWNLOAD Mathematica Notebook

The nth central trinomial coefficient is defined as the coefficient of x^n in the expansion of (1+x+x^2)^n. It is therefore the middle column of the trinomial triangle, i.e., the trinomial coefficient (n; 0)_2. The first few central trinomial coefficients for n=1, 2, ... are 1, 3, 7, 19, 51, 141, 393, ... (Sloane's A002426).

The central trinomial coefficient is also gives the number of permutations of n symbols, each -1, 0, or 1, which sum to 0. For example, there are seven such permutations of three symbols: {-1,0,1}, {-1,1,0}, {0,-1,1}, {0,0,0}, and {0,1,-1}, {1,-1,0}, {1,0,-1}.

The generating function is given by

f(x) = 1/(sqrt((1+x)(1-3x)))
(1)
= 1+x+3x^2+7x^3+....
(2)

The central trinomial coefficients are given by the recurrence equation

 a_n=((2n-1)a_(n-1)+3(n-1)a_(n-2))/n
(3)

with a_0=a_1=1, but cannot be expressed as a fixed number of hypergeometric terms (Petkovšek et al. 1996, p. 160).

The coefficients satisfy the congruence

 (n+1; 0)_2=(n; 0)_2 (mod n)
(4)

(T. D. Noe, pers. comm., Mar. 15, 2005) and

 (p; 0)_2=1 (mod p)
(5)

for p a prime, which is easy to show using Fermat's little theorem (T. D. Noe, pers. comm., Oct. 26, 2005).

Sum are given by

(n; 0)_2 = sum_(k=0)^(n)(n; 2k)(2k; k)
(6)
= sum_(k=0)^(n)(n!)/((k!)^2(n-2k)!)
(7)
= sum_(k=0)^(n)(-1)^k(n; j)(2n-2k; n-k).
(8)

Closed form include

(n; 0)_2 = _2F_1(1/2(1-n),-1/2n;1;4)
(9)
= (-1)^nC_n^((-n))(1/2)
(10)
= i^n3^(n/2)P_n(-1/3sqrt(3)i)
(11)
= ((-4)^nsqrt(pi)_2F^~_1(-n,-n;1/2-n;1/4))/(n!)
(12)
= (sqrt(pi)_2F^~_1(1/2,-n;1/2-n;-3))/(n!),
(13)

where C_n^((lambda))(x) is a Gegenbauer polynomial, P_n(x) is a Legendre polynomial, and _2F^~_1(a,b;c;z) is a regularized hypergeometric function.

The numbers of prime factors (with multiplicity) for n=1, 2, ... are 0, 1, 1, 1, 2, 2, 2, 4, 2, 2, 3, 2, ... (Sloane's A102445). (n; 0)_2 is therefore prime for n=2, 3, and 4, with no others for n<=10^5 (E. W. Weisstein, Mar. 14, 2005). It has apparently not been proved that no prime central trinomials exist. Moreover, a more general unproven conjecture states that there are no prime trinomial coefficients except these three central trinomials and all trinomials of the form (n; n-1)_2.

CentralTrinomialCoefficientReIm
CentralTrinomialCoefficientContours

A plot of the central trinomial coefficient in the complex plane is given above.

Considering instead the coefficient of x^n in the expansion of (x^2-x-1)^n for n=1, 2, ... gives the corresponding sequence -1, -1, 5, -5, -11, 41, -29, -125, 365, -131, ... (Sloane's A098331), with closed form

 b_n=i^nC_n^((-n))(-1/2i),
(14)

where C_n^((lambda))(x) is a Gegenbauer polynomial. These numbers are prime for n=3, 4, 5, 6, 7, 10, 11, 12, 26, 160, 3787, ... (Sloane's A112874), with no others for n<10^5 (E. W. Weisstein, Mar. 7, 2005).

SEE ALSO: Central Binomial Coefficient, Central Fibonomial Coefficient, Trinomial Coefficient

지속적인 허위 신고시 신고자가 제재를 받을 수 있습니다.
신고 사유를 입력하십시오:

발도장 찍기
아이콘 엔지에스엘피스 (2011-04-13 23:22:11 KST)
0↑ ↓0
센스 이미지
관심주지마세여
어그로종자임ㅎㅎ
CoRrupt (2011-04-13 23:22:16 KST)
0↑ ↓0
센스 이미지를 등록해 주세요
야 이사람 빡쳤다고

amedonis (2011-04-13 23:20:31 KST)

밸게에 눈팅만하다가 처음보는데 또라이 하나가 학교망신시키고있네
설곽15기 위에 IMO대표 아니면 괜히 이딴데서 과고랑 올림피아드 망신시키지말고 조용히 있어
딱보니 내 고등학교 대학교 둘다 후배에 IMO도 못나간새낀데 존나 부끄럽네
댓글을 등록하려면 로그인 하셔야 합니다. 로그인 하시려면 [여기]를 클릭하십시오.
롤토체스 TFT - 롤체지지 LoLCHESS.GG
소환사의 협곡부터 칼바람, 우르프까지 - 포로지지 PORO.GG
배그 전적검색은 닥지지(DAK.GG)에서 가능합니다
  • (주)플레이엑스피
  • 대표: 윤석재
  • 사업자등록번호: 406-86-00726

© PlayXP Inc. All Rights Reserved.